82 research outputs found

    Decoupling of morphological disparity and taxic diversity during the adaptive radiation of anomodont therapsids

    Get PDF
    Adaptive radiations are central to macroevolutionary theory. Whether triggered by acquisition of new traits or ecological opportunities arising from mass extinctions, it is debated whether adaptive radiations are marked by initial expansion of taxic diversity or of morphological disparity (the range of anatomical form). If a group rediversifies following a mass extinction, it is said to have passed through a macroevolutionary bottleneck, and the loss of taxic or phylogenetic diversity may limit the amount of morphological novelty that it can subsequently generate. Anomodont therapsids, a diverse clade of Permian and Triassic herbivorous tetrapods, passed through a bottleneck during the end-Permian mass extinction. Their taxic diversity increased during the Permian, declined significantly at the Permo–Triassic boundary and rebounded during the Middle Triassic before the clade's final extinction at the end of the Triassic. By sharp contrast, disparity declined steadily during most of anomodont history. Our results highlight three main aspects of adaptive radiations: (i) diversity and disparity are generally decoupled; (ii) models of radiations following mass extinctions may differ from those triggered by other causes (e.g. trait acquisition); and (iii) the bottleneck caused by a mass extinction means that a clade can emerge lacking its original potential for generating morphological variety

    Global Taxonomic Diversity of Anomodonts (Tetrapoda, Therapsida) and the Terrestrial Rock Record Across the Permian-Triassic Boundary

    Get PDF
    The end-Permian biotic crisis (∼252.5 Ma) represents the most severe extinction event in Earth's history. This paper investigates diversity patterns in Anomodontia, an extinct group of therapsid synapsids (‘mammal-like reptiles’), through time and in particular across this event. As herbivores and the dominant terrestrial tetrapods of their time, anomodonts play a central role in assessing the impact of the end-Permian extinction on terrestrial ecosystems. Taxonomic diversity analysis reveals that anomodonts experienced three distinct phases of diversification interrupted by the same number of extinctions, i.e. an end-Guadalupian, an end-Permian, and a mid-Triassic extinction. A positive correlation between the number of taxa and the number of formations per time interval shows that anomodont diversity is biased by the Permian-Triassic terrestrial rock record. Normalized diversity curves indicate that anomodont richness continuously declines from the Middle Permian to the Late Triassic, but also reveals all three extinction events. Taxonomic rates (origination and extinction) indicate that the end-Guadalupian and end-Permian extinctions were driven by increased rates of extinction as well as low origination rates. However, this pattern is not evident at the final decline of anomodont diversity during the Middle Triassic. Therefore, it remains unclear whether the Middle Triassic extinction represents a gradual or abrupt event that is unique to anomodonts or more common among terrestrial tetrapods. The end-Permian extinction represents the most distinct event in terms of decline in anomodont richness and turnover rates

    Character distribution and phylogeny of the dissorophid temnospondyls

    Get PDF
    The phylogeny of the largely Permian temnospondyl group Dissorophidae is analyzed for the first time. Although hampered by poor preservation and incompleteness of finds, new data add substantially to our knowledge of the group. An analysis of 25 taxa and 70 characters gave the following results. (1) The Dissorophidae and Trematopidae each form monophyletic groups that are more closely related to one another than either of them is to amphibamids. Olsoniformes and Amphibamidae are each defined by clear-cut autapomorphies, making it unlikely that amphibamids are dwarfed dissorophids or olsoniforms. (2) Ecolsonia nests with Fedexia at the base of the Trematopidae. (3) The Dissorophidae falls into two major clades, the Dissorophinae sensu stricto (Dissorophus, Broiliellus) and the Cacopinae (Cacops, Kamacops, Zygosaurus). The Cacopinae is much better supported than the Dissorophinae. Platyhystrix and Aspidosaurus form successive sister taxa of all other dissorophids. Incompletely known dissorophids were found to nest as follows: (a) Brevidorsum, the Admiral Taxon and Rio Arriba Taxon at the base of the Cacopinae and (b) Conjunctio multidens forms an unresolved trichotomy with dissorophines and cacopines. The significance of osteoderms in dissorophid phylogeny is found to be much smaller than hitherto considered. doi:10.1002/mmng.201200010</a

    Elevated extinction rates as a trigger for diversification rate shifts: early amniotes as a case study

    Get PDF
    Tree shape analyses are frequently used to infer the location of shifts in diversification rate within the Tree of Life. Many studies have supported a causal relationship between shifts and temporally coincident events such as the evolution of “key innovations”. However, the evidence for such relationships is circumstantial. We investigated patterns of diversification during the early evolution of Amniota from the Carboniferous to the Triassic, subjecting a new supertree to analyses of tree balance in order to infer the timing and location of diversification shifts. We investigated how uneven origination and extinction rates drive diversification shifts, and use two case studies (herbivory and an aquatic lifestyle) to examine whether shifts tend to be contemporaneous with evolutionary novelties. Shifts within amniotes tend to occur during periods of elevated extinction, with mass extinctions coinciding with numerous and larger shifts. Diversification shifts occurring in clades that possess evolutionary innovations do not coincide temporally with the appearance of those innovations, but are instead deferred to periods of high extinction rate. We suggest such innovations did not cause increases in the rate of cladogenesis, but allowed clades to survive extinction events. We highlight the importance of examining general patterns of diversification before interpreting specific shifts

    Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis

    Get PDF
    Rates of extinction vary greatly through geological time, with losses particularly concentrated in mass extinctions. Species duration at other times varies greatly, but the reasons for this are unclear. Geographical range correlates with lineage duration amongst marine invertebrates, but it is less clear how far this generality extends to other groups in other habitats. It is also unclear whether a wide geographical distribution makes groups more likely to survive mass extinctions. Here we test for extinction selectivity amongst terrestrial vertebrates across the end-Triassic event. We demonstrate that terrestrial vertebrate clades with larger geographical ranges were more resilient to extinction than those with smaller ranges throughout the Triassic and Jurassic. However, this relationship weakened with increasing proximity to the end-Triassic mass extinction, breaking down altogether across the event itself. We demonstrate that these findings are not a function of sampling biases; a perennial issue in studies of this kind

    Body Size Evolution in Extant Oryzomyini Rodents: Cope's Rule or Miniaturization?

    Get PDF
    At the macroevolutionary level, one of the first and most important hypotheses that proposes an evolutionary tendency in the evolution of body sizes is “Cope's rule". This rule has considerable empirical support in the fossil record and predicts that the size of species within a lineage increases over evolutionary time. Nevertheless, there is also a large amount of evidence indicating the opposite pattern of miniaturization over evolutionary time. A recent analysis using a single phylogenetic tree approach and a Bayesian based model of evolution found no evidence for Cope's rule in extant mammal species. Here we utilize a likelihood-based phylogenetic method, to test the evolutionary trend in body size, which considers phylogenetic uncertainty, to discern between Cope's rule and miniaturization, using extant Oryzomyini rodents as a study model. We evaluated body size trends using two principal predictions: (a) phylogenetically related species are more similar in their body size, than expected by chance; (b) body size increased (Cope's rule)/decreased (miniaturization) over time. Consequently the distribution of forces and/or constraints that affect the tendency are homogenous and generate this directional process from a small/large sized ancestor. Results showed that body size in the Oryzomyini tribe evolved according to phylogenetic relationships, with a positive trend, from a small sized ancestor. Our results support that the high diversity and specialization currently observed in the Oryzomyini tribe is a consequence of the evolutionary trend of increased body size, following and supporting Cope's rule

    The Sail-Backed Reptile Ctenosauriscus from the Latest Early Triassic of Germany and the Timing and Biogeography of the Early Archosaur Radiation

    Get PDF
    Background Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3–247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. Methodology/Principal Findings We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the ‘sail’ of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Conclusions/Significance Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian–Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which appear to have been the first global radiation of archosaurs

    Assessing Arboreal Adaptations of Bird Antecedents: Testing the Ecological Setting of the Origin of the Avian Flight Stroke

    Get PDF
    The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding
    corecore